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Dimensionality Reduction

o Compress / reduce dimensionality:

e Matrix of 10° rows; 103 columns; no updates
e Random access to any cell(s); small error: OK

day
customer

ABC Ine.
DEF Ltd.
(GHI Ine.
KLM Co.
Smith
Johnson
Thompson

We Th Fr Sa Su
7/10/96 T/11/96 7/12/96 7/13/96 7/14/96
1 1 1 0 0
2 2 2 0 0
1 1 1 0 0
5 5 5 0 0
0 0 0 2 2
U U U b1 3
0 0 0 I 1

The above matrix is really “2-dimensional.” All rows can
be reconstructed by scaling[11100]Jor[000 1 1]
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Dimensionality Reduction

{d=1

o Assumption: Data lies on or near a low
d-dimensional subspace

o Axes of this subspace are effective representation of
the data
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Why Reduce Dimensions?

Why reduce dimensions?
o Discover hidden correlations between different
attributes of an object

e Words that occur commonly together for documents of the same
topic

o Remove redundant and noisy features

e Not all words are useful

o Interpretation and visualization

o Easier storage and processing of the data
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An Initial Example

M= UV : aUsers-to-Movies Rating matrix

Consider each of the 6 users as a data point (a row in M) characterized by his/her rating on the 5
movies, i.e. each User is a 5-dimensional data-point.
Conversely, each of the 5 Movies is a 6-dimensional data-point characterized by the rating given

by each of the 6 users.

IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the (6x2) and (2x5)
matrices, we can represent each of the 6 users, as well as the 5 movies, as data-points on ONE
new (the same) 2-dimensional space.
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This vector in the old 5-dim. space gives
the direction corresponding to the 1st axis
of the new 2-dim space DIMRED 6
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An Initial Example
M= UV : aUsers-to-Movies Rating matrix

Consider each of the 6 users as a data point (a row in M) characterized by his/her rating on the 5
movies, i.e. each User is a 5-dimensional data-point.

Conversely, each of the 5 Movies is a 6-dimensional data-point characterized by the rating given

by each of the 6 users.

IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the (6x2) and (2x5)
matrices, we can represent each of the 6 users, as well as the 5 movies, as data-points on ONE

new (the same) 2-dimensional space.

The rating of User 3 on Movie 1 can be computed as
the similarity (recall: projection or dot-product) between
User 3 and Movie1 in the new 2-dimensional space
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Coordinates of Movie1 in
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M= UV : aUsers-to-Movies Rating matrix

Consider each of the 6 users as a data point (a row in M) characterized by his/her rating on the 5
movies, i.e. each User is a 5-dimensional data-point.

Conversely, each of the 5 Movies is a 6-dimensional data-point characterized by the rating given
by each of the 6 users.

IF we can decompose the 6x5 matrix (M) into the product of U and V, i.e. the (6x2) and (2x5)
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SVD - Definition

A[mxn] U[mxr] ) [rXxr] (V[nxr])

o A: Input data matrix
e m x n matrix (e.g., m documents, n attributes or features, e.g. terms)
o U: Left singular vectors

e m X r, column orthonormal matrix, (m documents, r hidden/latent
concepts)

o X: Singular values

e rXx rdiagonal matrix (strength of each hidden/latent ‘concept’)
(r : rank of the matrix A)

o V: Right singular vectors

e n X r, column orthonormal matrix
(n attributes or features, e.g. terms, and r hidden/latent concepts)
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SVD - Properties

It is always possible to decompose a real
matrix Ainto A=U X VT , where

o U, X, V: unique

o U, V: column orthonormal

e UTU=I VTV=] (I identity matrix)

e (Columns are orthogonal unit vectors)
O X: diagonal

e Entries (singular values) are positive,

and sorted in decreasing order (6,26, 2 ...

v
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SVD — Example: Users-to-Movies

oA =ULX V"-example: Users to Movies

T
56 2 3 &
=22 338 <
11100
SciFi |3 3 3 0 0 (
Fans |4 4 4 0 0
Y1555 0 0| m
0204 4
Romang®) 0 0 5 5 \
Fafsh)lozz_ U

“Concepts”

AKA Latent dimensions

Each row of A represents a User (a data point) AKA Latent factors

who is characterized by the ratings he/she gave

to a set of Movies DIMRED 14



SVD — Example: Users-to-Movies

o
D
Il

UZX V" -example: Users to Movies

U -

0.13 0.02 -0.01 ¥
0

9

0

0.41 0.07 -0.03
0.55 0.09 -0.04 1
0.68 0.11 -0.05| x |0
0.15 -0.59 0.65 0
0.07 -0.73 -0.67
0.07 -0.29 0.32 v7 _
- “[0.56 0.59 0.56 0.09 0.09
0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.09 0.09
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SVD — Example: Users-to-Movies

0A=U2X V'-example
X %’é 2  SciFi-concept “weight” of User 1 (before scaling)
g é % % :EE’ Ron:?-concept “weight” of User 1 (before scaling)
= < 00 ~Uis “user-to-concept”
11100 '0-01 similarity matrix
SciFi |3 3 3 0 O] ]0.41 0.07 -0.03 —
Fans 4 4 4 0 0| [0.55 0.09 -0.04 124 0 0
15 550 o|7[0.68 0.11 -005] x |0 950 X
T 020 4 4] |0.15-0.59 0.65 0o 0 13
Romangg) 0 0 5 5| |0.07 -0.73 -0.67
"o Lo 1 0 2 2] [0.07-029 032

56 0.59 0.56 0.09 0.00
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09
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SVD — Example: Users-to-Movies

oA =UZX V"-example: Users to Movies
_5 ? <§ o SciFi-concept “weight” of users before scaling
_;cf g c% § :EE’ RA?-ucefoncept “weight” of users before scaling
11100 0.13 0.02 -0.01 y
SciFi |3 3 3 0 0 0.41 0.07 -0.03 —
Fans 4 4 4 0 0| 0.55 0.09 -0.04 124 0 0
" Is 550 0l70.68 0.11-005] x [0 950 X
T 020 4 4| [0.15-0.59 0.65 0 0 13
Romang) 0 O 5 5§ 0.07 -0.73 -0.67
Faps Lo 1 0 2 2] [0.07 -0.29 0.32 V7 _
U “[0.56 0.59 0.56 0.09 0.09

0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.09 0.09
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SVD — Example: Users-to-Movies

0A=U2X V'-example
.-
X = o5 &
< < o § @ SciFi-concept weight of users (before strength scaling)
595 8 E
- < 0 0 U - “strength” of the SciFi-concept
1 1100 0.13 0.02 -0.01 \
SciFi |3 3 3 0 O 0.41 0.07 -0.03 -
fans (44 4 0 0f 0.5 0.09 -0.04 @' 0
5550 0/[7]068 0.11 -0.05] x [0 950 X
T 020 4 4| |0.15-0.59 0.65 o 0 13
Romang®) 0 O 5 5| |0.07 -0.73 -0.67
Fans Lo 1 02 2] [007 029 032 VT

0.56 0.59 0.56 0.09 0.09)
0.12 -0.02 0.12 -0.69 -0.69
0.40 -0.80 0.40 0.09 0.09

DIMRED 18 ™=




SVD — Example: Users-to-Movies

oA=UX V'-example
E c T © iFi- '
_ch & % § <E,: SciFi-concept vector for movies
1 ?%@\o 13 0.02 -0.01 1240 0
SciFi |3 3 3 0 ORNJQO.41\ 0.07 -0.03] X |0 95 0 X
Fans 14 4 4 0 0 ; 0.09 -0.04 0 0 1.3
15 55 0 0of70.68To -0.05 - -
T 02044 0.15-0.59 05 Here V is “movie-to-concept”
Romangd) O O § § -0.73 -0.6 similarity matrix
Faps Lo 1022 -0.29 032 VT

0.59)0.56 0.09 0.09]
| 0.12 -002 0.12 -0.69 -0.69

SciFi-concept “weight”

of Movie 2 (Alien) 10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #1

J

‘movies’, ‘users’ and ‘concepts’:

o U: user-to-concept similarity matrix

o V. movie-to-concept similarity matrix

O X: its diagonal elements:
‘strength’ of each concept
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SVD - Interpretation #2 — Choose a new axis to
Minimize total “projection errors”

oA =U X VT-example:

e V: “movie-to-concept” matrix

e U: “user-to-concept” matrix
CF

A

N O OO OO

— O N U0 A W
S OO U A W -

IOOOUI-RM
¥ Nk O OO

U
0.13 0.02
0.41 0.07
0.55 0.09 -0.04
0.68 0.11 -0.05
0.15 -0.59 0.65
0.07 -0.73 -0.67

0.01
-0.03

0.07 -0.29 0.32]

first right
singular
vector

To be accurate,

this diagram should be
a 5-D plot !I! We use

a 2-D plot for simplicity

Movie 2’s rating
by the user

Movie 1’s rating by
the user

0

0 X
1.3

[0.56 0.59 0.56 0.09 0.09]
0.12 -0.02 0.12 -0.69 -0.69

10.40 -0.80 0.40 0.09 0.09
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SVD -

interpretation #2

Each user (a 5-D data point), e.g.

o SVD gives ‘best’ axis a, is characterized by the ratings

to project on:

e ‘best’ = min sum of
squares of projection
errors

o In other words,
minimum

reconstruction error

he/she gave to the set of 5 Movies

-

first right
® singular vector

Movie 2’s rating by the user

Movie 1’s rating

by the user
To be accurate, the above diagram should be
a 5-D plot !! (Here, we use a 2-D plot for
simplicity / illustration only) 22



SVD - Interpretation
oA=U2XVT-example:

e V: “movie-to-concept” matrix
e U: “user-to-concept” matrix

a,

A

P OO O R WM

0.13 0.02 -0.01)
0.41 0.07 -0.03
0.55 0.09 -0.04
0.68 0.11 -0.05| X
0.15 -0.59 0.65
0.07 -0.73 -0.67
0.07 029 0.32

U

—_ O NN AW
N RO O OO
Il

IOOOUI-BM
¥ Nk O OO

#2 (cont'd)

o firstright
singular
vector

Movie 2’s rating
by the user

Movie 1’s rating by

Z the user
0O O
95 0 X
0 1.3

[0.56 0.59 0.56 0.09 0.09]
0.12 -0.02 0.12 -0.69 -0.69

10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2 (cont'd)

A=UX VT
®
Right multiply by V, < T~
; g ® fi_rst right
=>AV=UXV'V=UX S vecor |
a,
fr11 (mj% 0.02 0.40 Movie 1s ating by
3330 0| |l0.59{-0.02-0.80
4 4 4 0 0]y|0.56] 0.12 0.40| = ?
555 0 0] [|0.09}0.69 0.09
0 2 0 4 4] [0.09]-0.69 0.09
00055 % y I =
— = 0.12 -0.02 0.12 -0.69 -0.69
A vTL0.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2 (cont'd)
A=UXVT |

=>AV=UZIV'V=UZX

AV

o
0.13 0.02
0.41 0.07
0.55 0.09
0.68 O0.11
0.15 -0.59
0.07 -0.73

0.07 -0.29

-0.01]
-0.03
-0.04
-0.05

0.65
-0.67

0.32

Movie 2’s rating
by the user

o firstright

singular
vector

Movie 1’s rating by
the user

1.61
5.08
6.82
8.43
1.86
0.86

0.86

Uux

0.19
0.66
0.85
1.04
-5.60
-6.93
-2.75

-0.01
-0.03
-0.05
-0.06

0.84
-0.87

0.41
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SVD - Interpretation #2 (cont'd)
A=UXVT |

=>AV=UZVV=UZX

o firstright
singular
vector

Movie 2’s rating
by the user

oU X : Gives the coordinates
of the points in the projection axes

Movie 1’s rating by

a1 the user

\ A v ERET))

1 1 00 [[056]002 040 0.19 -0.01"
3330 0] [p.59]-0.02-0.80 5.08 0.66 -0.03

4 4 4 0 0|y[l0.56]0.12 040] _ [6.82 0.85 -0.05
5550 0] [0.09}0.69 0.09 8.43 1.04 -0.06
020 4 4| []0.09]-0.69 0.09 1.86 -5.60 0.84
00055 v, - 0.86 -6.93 -0.87
0102 2 0.86 -2.75 041 ]




SVD - Interpretation #2 (cont'd)
— T 5 .
A=UXV g \
= AV=UXZVV=UZX . ‘i'irﬁ;tﬂ'ui'r“
o U X : Gives the coordinates gz

of the points in the projection axes

Projection of Movie 1’s rating by

a1 users on the the user

\ A V “Sci-Fi” axis:_ U z

1 1 00 [[036]0.02 040 AV1\['1.61 0.19 -0.01
33300 .59 |-0.02 -0.80 5.08| 0.66 -0.03

4 4 40 0[x[l0.56]0.12 040 _ 6.82| 0.85 -0.05
5550 0| |l0.09}0.69 0.09 8.43| 1.04 -0.06
020 4 4| |l0.09[-0.69 0.09 1.86| -5.60 0.84
00055 v, - 0.86| -6.93 -0.87
01022 10.86] -2.75 041 .,




SVD - interpretation #2 (more later)
o SVD gives ‘best’ axis to project on:

e ‘best’ = min sum of squares of projection errors

o i.e. Choose the axis v to minimize reconstruction error
(i.e. the sum of square of the "distance” shown in the
diagram below for all data points)

== Choose the axis v to maximize sum of square of
projection length of all data points (i.e. each row in A)

Xi

— distance

™~ projection

Figure 4.1: The projection of the point x; onto the line through the origin in the direction
of v



Iccocwn & L o=l

SVD - Interpretation #2 (cont'd)
A=UXVT=>AV=UXVIV=UZX

o U X : Gives the coordinates

of the points in the projection axis

— O N U A W -

variance (‘spread’) on the v, axis:

Maximize total spread of all data

points along the axis defined by v,
=> minimize total projection errors

1

S OO U AW

0

N O OO O

NV N kOO OO

0.13 0.02 -0.01)
0.41 0.07 -0.03
0.55 0.09 -0.04
0.68 0.11 -0.05
0.15 -0.59 0.65
0.07 -0.73 -0.67

0.07 -0.29 0.32]

o firstright
singular
vector

Movie 2 rating

0.56 0.59 0.56 0.09 0.09)
0.12 -0.02 0.12 -0.69 -0.69

10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2

More details

o Q: How exactly is dim. reduction done?

1110 o] [o.13 0.02 -0.01

3330 0| (041 0.07 -0.03 _ —

4 440 0| 055 009 -0.04 1240 0

5550 0/=]0.68 0.11 -0.05| X |0 950 X

020 4 4| |0.15 -0.59 0.65 0 0 13

0005 5| [007-073-067 _ -
010 2 2l loo7 020 032 0.56 0.59 0.56 0.09 0.09

0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.09 0.09
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Recall: SVD

A =UXV! =Y, 0iu;0V]

n

[E;/ A\
EVT
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Recall: SVD

A =UXV! =% 0u;0V]

n
A ou,vTy P T PAVAPY
H I

( \

Gi eeoo Scalar
Ui eeooe VeCtor
Vi T ) VeCtor
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SVD - Interpretation #2

More details

o Q: How exactly is Dimension Reduction done?

o A: Set smallest singular values to zero

1110 o] [o.13 0.02 -0.01

3330 0| (041 0.07 -0.03 _ —

4 440 0| 055 009 -0.04 1240 0

5550 0/=]0.68 0.11 -0.05| X |0 950 X

020 4 4| |0.15 -0.59 0.65 0 0 13

0005 5| [007-073-067 _ -
010 2 2l loo7 020 032 0.56 0.59 0.56 0.09 0.09

0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2

More details

o Q: How exactly is Dimension Reduction done?

o A: Set smallest singular values to zero

1110 o] [o.13 0.02 -0.01

3330 0| |0.41 0.07 -0.03 _ _

4 440 0| 055 009 -0.04 1240 0

5550 0/=]0.68 0.11 -0.05| X |0 950 X

020 4 4] |0.15-0.59 0.65 0o 0 \)(3_

0005 5| |007-0.73 -0.67] _ -
010 2 2 loo7 020 032 0.56 0.59 0.56 0.09 0.09

0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2

More details

o Q: How exactly is dim. reduction done?

o A: Set smallest singular values to zero

Iccocwn & L o=l

— O N U A W -

S OO U A W -

N O OO O O

NV N kOO OO

u

0.13 0.02 -0.01)
0.41 0.07 -0.03
0.55 0.09 -0.04
0.68 0.11 -0.05
0.15 -0.59 0.65
0.07 -0.73 -0.67

0.07 -0.29 0.32]

24
X

S e O

-
50
D&
0.56 0.59 0.56 0.09 0.09)
0.12 -0.02 0.12 -0.69 -0.69

o © |

10.40 -0.80 0.40 0.09 0.09
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SVD - Interpretation #2

More details

o Q: How exactly is dim. reduction done?

o A: Set smallest singular values to zero

Iccocwn & L o=l

— O N U A W -

S OO U A W -

N O OO O O

NV 0N kOO O O

u

0.13 0.02 -§.0

0.55 0.09 -04
0.68 0.11 -0.95
0.15 -0.59 0465
0.07 -0.73 -(Q.

0.07 -0.29

X

0.56 0.59 0.56 0.09 0.09)
0.12 -0.02 0.12 -0.69 -0.69
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SVD - Interpretation #2

More details

o Q: How exactly is dim. reduction done?

o A: Set smallest singular values to zero

Iccocwn & L o=l

— O N U A W -

S OO U A W -

N O OO O O

NV N kOO OO

u

0.13 0.02
0.41 0.07
0.55 0.09
0.68 0.11
0.15 -0.59
0.07 -0.73

0.07 -0.29

12.4 0
0 95 X

0.56 0.59 0.56 0.09 0.09)
0.12 -0.02 0.12 -0.69 -0.69
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SVD - Interpretation #2

More details
o Q: How exactly is dim. reduction done?

o A: Set smallest singular values to zero

11100 0.92 0.95 0.92 0.01 0.01
33300 291 3.01 2.91 -0.01 -0.01
44400 _ |39 4.04 390 0.01 0.01
S §S5S0O0] ™ |482500 482 0.03 0.03
02044 0.70 0.53 0.70 4.11 4.11
0003535 -0.69 1.34 -0.69 4.78 4.78
010 2 2  0.32 0.23 0.32 2.01 2.01_

Frobenius norm:
_ IA-Blp = V % (A-By)?
IMl = VE; M2 Bl = N 24 (A5
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SVD — Best Low Rank Approx.

Sigma

A U

B is best approximation of A

B

S——
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SVD — Best Low Rank Approx.

o Theorem: LetA=UZ VT (0420,2..., rank(A)=r)
thenB=US VT
e S = diagonal nxn matrix where s;=¢; (i=1...k) else s=0

IS a best rank-k approximation to A:
e B is a solution to min, I4-Bly where rank(B)=k

X

11 T12 ... Tin
U11 1 0 V11 ... UVip
21 oo ... ] 0 .
) ) ' Um1 T - .
x m m : !“

ml Tmn
mXn rXr
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Proof of SVD = Best Low Rank Approx.
(Refer to Chapter 11.3.4. of [MMDS])

o Theorem: LetA=UZ VT (0420,>..., rank(A)=r)
thenB=US VT

e S =diagonal nxn matrix where s=¢; (i=7...k) else s=0

IS a best rank-k approximation to A:
e B is a solution to min, IA-Bl; where rank(B)=k

X

T i T U 0 v
11 12 .- 1n ) n
TH: T e B U.u '. o 0 v?l ) G
: : 5 e | 5 -
m "

ZTmil Imn
mXn rXr

o We will need 2 facts:
° ||M||FZZi(qii)zwhereM=PQRis SVD of M
e UZVT-USVT=UE-S)VT
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SVD — Best Low Rank Approx.
o We will need 2 facts:

o |IMl|. = Xx(qix)? where M= P Q Ris SVD of M

2
1M =35 m)? =305 (30 panersy)
? 9 7 7 k /)
H*\[H — Z S: S: S: S: S:])ik(Ikﬁ‘/'éj])in.(]nm'/'mj
i | k l n

m

Y . pikpin is 1 it k = n and 0 otherwise

We apply:

olUX VT - US VI = U (Z - S) VT - P column orthonormal

-- R row orthonormal
-- Q is diagonal
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Proof of Fact #1

M = PQR

M|, = Z(m ) —EZ(ZZP A —ZEEEEZM“
], ZZZ n ,{Z§qk,,qm,nzp,-,kp,-,m}

Since Zpi,kpi’m =1 ifk=m ;ow.=0

= Terms inside the summation {22‘1 L. z Bl } are non-zero only when k = m

= |M], ZZZ,, 12 22261,,,,4 21, g

Since Erl.r.—l if I=n ;0ow.=0,
o] 1]
j

=M =YY, 9, -2 2(0,.) =S¢, =

’Q”F because g, =0for m#n
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SVD — Best Low Rank Approx.

o A=UZVT B=USVT (020,2... 2 0, rank(A)=r)
e S = diagonal nxn matrix where s;=o; (i=1...k) else s=0

then B is solution to ming I4-Bl. , rank(B)=k
Why?

r
. . . 2
min HA — BH = mlnHZ — SH =min, Z(Gi —5,)
B,rank(B)=k F F =
Weused: USVT-USVT=U(Z-S)VT N
o We want to choose s; to minimize
o Solution is to set s;=q; (i=1...k) and other s=0

= min Z(G —5.)" + Za Zrlaiz

i=k+1 i=k+1 DIMRED 45



SVD — Best Low Rank Approx.

Theorem 0.1. Set "
Ak = ZO’j'U,j'UJT.
G

Then, Because Frobenius norm
o (A Blp =44 O 19 IS unitarily-invariant ;
Bermxn i e = 2 ot e next slide for details)
rank(B)<k i=k+1

Proof. Suppose A =UXVT. Then

min ||[A-B||%= min |UZVT -UUTBVVT|% = min |Z-UTBV|%.
rank(B)<k rank(B)<k rank(B)<k

Now,
n

I£ - UTBV|% =Y (Si — (UTBV)ii))” + off-diagonal terms.
i=1
If B is the best approximation matrix and U7 BV is not diagonal, then write U7 BV = D + O, where D is
diagonal and O contains the off-diagonal elements. Then the matrix B = UDV7 is a better approximation,

which is a contradiction.
Thus, U7 BV must be diagonal. Hence,

n k n
IZ=D|%=> (0s—di)*=> (o —di)*+ ) oF,
i=1 i=1 i=k+1

and this is minimal when d; = 0;, i = 1,...,k. The best approximating matrix is Ay = UDVT, and the

approximation error is /> 0 .., 07. O

Source: https://www.cs.yale.edu/homes/el327/datamining2013aFiles/07_singular_value_decomposition.pdf g



What is a Unitarily Invariant Norm ?

A norm on C™*"is unitarily invariant if || U AV || = || A||for all unitary I/ € C™*™ and V € C"*"
and for all 4 € C™*". One can restrict the definition to real matrices, though the term unitarily
invariant is still typically used.

Two widely used matrix norms are unitarily invariant: the 2-norm and the Frobenius norm.
The unitary invariance follows from the definitions. For the 2-norm, for any unitary {/ and V/,
using the fact that ||/ ||, = | z||,, we obtain

y = (".“".I’ ‘ .—‘"_" 9
IUAV |3 = max H——I{ max U—L
w20 |z||o 20 ||zl
Ayll2 ,
= max H ,U‘ - = Vz)
B Vel
Ayl
= max | Ayl = || Alls.
v70  ||yll2

For the Frobenius norm, using || A||%. = trace(A*A),

|UAV||% = trace(V*A*U* - U AV)
= trace(V"AAV)
= trace(A*A) = || Al|%.

since the trace is invariant under similarity transformations.

Source: https://nhigham.com/2021/02/02/what-is-a-unitarily-invariant-norm/ DIMRED 47



Unitarily Invariant Norm and connection to SVD

More insight into unitarily invariant norms comes from recognizing a connection with the
singular value decomposition

A=P¥Q*, P'P=1I, @QQ=I, X=dag(o), o12::-20,20.

Clearly, || A|| = ||¥||, so || A|| depends only on the singular values. Indeed, for the 2-norm and the
Frobenius norm we have || A, = oy and | A = (.7, #7)"/% Here, and throughout this article,
g = min(m, n). Another implication of the singular value dependence is that || A|| = || A*| for all

A for any unitarily invariant norm.

Source: https://nhigham.com/2021/02/02/what-is-a-unitarily-invariant-norm/ DIMRED 48



End of Backup Slides
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SVD - Interpretation #2 (cont'd)

Equivalent:

‘spectral decomposition’ of the matrix:

S OO U A W -
— O N UL A W -
S OO U A W -
N O OO O O
I b O O O O
<
c
N
Q
N

A A (R —
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SVD - Interpretation #2

Equivalent:

‘spectral decomposition’ of the matrix

< n

111 0 0] k terms

333 0 0] —

44400l 61/!»11 Y\T1"' 6, U, VTp 4

55500 mx1 Txn

0 204 4] Assume:6,206,20652...20

0 00535

01 0 2 2] why is setting small o, to 0 the right
thing to do?
Vectors u; and v; are unit length, so o;
scales them.

So, zeroing small o; introduces less error.
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SVD - Interpretation #2

Q: How many os to keep?

A: Rule-of-a thumb:
keep 80-90% of ‘energy’ (=262

= 61 U Vi + o U, Vl, 4

Assume: 6, 265, 2 632 ...

IOOOUI-BMH‘*
— O N UL A W -
S OO U A W -
N O OO O O
INUI-BOOOOI,
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SVD - Complexity
o To compute SVD:

e O(nm?2) or O(n?m) (whichever is less)
o But:

e Less work, if we just want singular values
e or if we want first k singular vectors
e or if the matrix is sparse

o linear algebra packages like
e LINPACK, Matlab, SPlus, Mathematica ...
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SVD - Conclusions so far
o SVD: A= U X V': unique

e U: user-to-concept similarities
e V: movie-to-concept similarities

e X : strength of each concept

o Dimensionality reduction:

e keep the few largest singular values
(80-90% of ‘energy’)
e SVD: picks up linear correlations
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Relation to Eigen-decomposition

o SVD gives us:

o A=UXVT
o Eigen-decomposition:
o S=XAX!

* S is symmetric
* U, V, X are orthonormal (UTU=I),
A, 2 are diagonal

o What is:
e AAT=UXVTI(UZV)T=UXVI(VZTUT) = UX2T UT
e ATA=VZTUT(UXVT) =V 2IXTVT
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Relation to Eigen-decomposition

o SVD gives us:

e A=UXVWVT
- e Shows how to compute
o Eigen-decomposition: SVD using eigenvalue
o S=XAXT decomposition!
« Sis symmetric
- U, V, X are orthonormal (UTU=I),
A, X are diagonal
o What is: XA X!

VA
o AAT= UX VT(UZ VT)T = UX VT(VETUT) = USET UT
e ATA=VITUT(UZVT) =V ZZTVT

)
A;(/T\ XT  So, i, =o¢;
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SVD: Properties

oAAT=U22UT
o ATA=V X2 VT

o (ATA)k=V 32k YT
o E.g.: (ATAR=V 32VTV 32VT=V 34 \T

o (ATA) K ~ V1 G12k V1T fOr k>>1
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Case study: How to query?

o Q: Find users that like ‘Matrix’

o A: Map query into a ‘concept space’ — how?

T
55 2 8 2
23 h O < _
1110 0| [013 0.02 -0.01
SciFi |3 3 3 0 O 0.41 0.07 -0.03 _
Fans |4 4 4 0 0| |0.55 0.09 -0.04 124 0 0
" 15 550 0|7loe6s 011 -005] x |0 950 | x
T 020 4 4] |0.15-0.59 0.65 o 0 13
Eomarr@ 005 5| [0.07 -0.73 -0.67
T 10 10 2 2] [007-029 032556 0.59 0.56 0.09 0.09

0.12 -0.02 0.12 -0.69 -0.69
10.40 -0.80 0.40 0.0Qre009]




Case study: How to query?

o Q: Find users that like ‘Matrix’

o A: Map query into a ‘concept space’ — how?

®
x 23 2 < o9
56 2 8 2 .
=350 < . :
quooo:l v2 o
v1

Project into concept space:
Inner product with each
‘concept’ vector v;

Matrix
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Case study: How to query?

o Q: Find users that like ‘Matrix’

o A: Map query into a ‘concept space’ — how?

g q
X 23 g <
852§ ¢ -
=3I H S < . :
q Eo 0 0 o:l v2 o
v1 q*v,
Project into copcept space: Matrix
Inner product with each

‘concept’ vector v;
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Case study: How to query?

Compactly, we have:

qconcept=qv
©

=os 8
X = 5 2
s € 9o © O
© 2 5% x E
= 2 ¢ O <
0O 0 O

0.56 0.12
0.59 -0.02
0.56 0.12
0.09 -0.69

0.09 -0.69

movie-to-concept
similarities (V)

SciFi-concept

- [21.8 0.6]
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Case study: How to query?

o How would the user d that rated
(‘Alien’, ‘Serenity’) be handled?
dconcept =dV

W Serenity
o Casablanca

0.56 0.12
0.59 -0.02
0.56 0.12
0.09 -0.69

0.09 -0.69

movie-to-concept
similarities (V)

SciFi-concept

= [51.2 0.4]
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Case study: How to query?

o Observation: User d that rated (‘Alien’, ‘Serenity’)
will be similar to user q that
rated (‘Matrix’), although d and q have
zero ratings in common!

®
@)
c
X -*?%0_3
S c g ® © SciFi-concept
© L2 % x E l
=z O <
d= [04 50 o:| ------------------ - 25 04]

q= I:s 0 0 0 O:I """"""""" ] [5.2 0.4]

Zero ratings in common Similarity # 0
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Principal Component Analysis
(PCA)
An Application of SVD
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Recall: The 2

"d |nterpretation of SVD

Each user (a 5-D data point), e.g.

o SVD gives ‘best’ axis a, is characterized by the ratings

to project on:

e ‘best’ = min sum of
squares of projection
errors

o In other words,
minimum

reconstruction error

he/she gave to the set of 5 Movies

T~

first right
® singular vector

-

Movie 2’s rating by the user

Movie 1’s rating

by the user
To be accurate, the above diagram should be
a 5-D plot !! (Here, we use a 2-D plot for
simplicity / illustration only) 65



Philosophy of PCA

o PCA is concerned with explaining the variance/
covariance structure of a set of variables (features)
through a few linear combinations.

o We typically have a m x n input data matrix, A:

e Each row of A corresponds to one n-dim data-point

e i.e. m observed data-points, each data-point consists of n
potentially correlated variables (features) x,,x,,..x,

o PCA looks for a transformation of the n x;’s into d new
variables (features) z/’s that are uncorrelated.

o Obijective: To replace the old variables (features):
X4,Xo,...X, With a few new features: z’'s without losing
much information.
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Geometric picture of principal components (PCs)

97

Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt
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Geometric picture of principal components (PCs)

L2 L2

The 1s derived from a minimum distance fit to a line 1n

space ; direction of this line is that of the 15 Principal Vector , say v,

The 1s derived from a minimum distance fit to another
line 1n the plane perpendicular (orthogonal) to the 15t Principal
vector

‘ Adapted from http://www.astro.princeton.edu/~gk/A542/PCA.ppt ‘ DIM RED 68



PCA: General methodology

From n original variables (features): x;, x,,...,x,:

Produce d new variables (features): z,,z,,...,z4}

z's are the
Z1 — V11X + V12X» + ... T V1inXn Principal
Zy) T VoXp T VpXp T T Xy Components

N.B: Each of these
new variables 1s a
LINEAR
such that: combination of the
old variables x;’s

Zg= Vg X) T VX, T T VaX,

z's are uncorrelated (orthogonal) to each other

z, explains as much as possible of original variance in data set
z, explains as much as possible of remaining variance

etc.

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt DIMRED 69




Principal Components Analysis

2 |
4.0 4.5

Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

5.0
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\ Feature 2

Xi2 > -~ aj

Xi .1

s sa Feature 1

PCA

Algebra: orthonormal transform
Geometry. axis rotation

Note that:

o Zi1=a:'y
Recall the 21 = Vix1 TV ® .. ¥ viXy i1=8i"Vy
definition of 2> =VyX; T vyX, + ...+ vyxy Zip=a; v,

Z1722, P

24 = Vg1 X) T VgXy T oo T VgXy

A n
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Adapted from http://myweb.dal.ca/~hwhitehe/BIOL4062/pca.ppt

Terminologies for PCA

O The column vector vy = {v,,v}3,...,V 15} , sometimes referred as the
15t Principal Vector, defines the direction of the axis for the 15t new

variable, z, , which 1s the actual 15t Principal Component (PC)

® The vy;’s are called the coefficients (or loadings) of 1st PC

e It can be shown that the entire vector: {v,{,v{s,...,V1,} 1S the 1st
Eigenvector, 1.¢., the one corresponds to the largest eigenvalue of
the correlation/covariance matrix (which captures the correlation
between different old features) of the original nput data set

Similarly,

O The column vector vq= {V4;,Vg,---,Vans defines the direction of the
axis for the d-th new (derived) variable, z4, 1.€. the d-th PC

O The vy;’s are called the coefficients (or loadings) of d-th PC

O {V41,Vq,----Vaqns 18 the d-th Eigenvector, 1.¢. the one corresponds to
the d-th largest eigenvalue of the correlation/covariance matrix of the
input data set... DIMRED 72



How to determine v1 ?
By Minimizing Total "Reconstruction Error”

o SVD gives ‘best’
axis to project on:

e ‘Best’ = min sum
of squares of
projection errors

e |In other words,
minimizing total
reconstruction erroi

by the user

ing

Movie 2’s rat

-

Each user (a data point)
is characterized by the
ratings he/she gave to a
set of Movies

®
° \
first right
o ® singular vector
%
®
®
®

Movie 1’s rating
by the user
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Determine v1
by Minimizing Total "Reconstruction Error”

o Find the ‘Best’ axis (v1) to project on:

e ‘Best’ = minimize sum of squares of projection errors
= minimize sum of squares of “distance” for ALL xi’s
= maximize sum of squares of “projection” for ALL xi’s

Xi

— distance

™~ projection

Figure 4.1: The projection of the point x; onto the line through the origin in the direction
of v
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How to determine v, ?

Objective: To find the direction of a new axis which minimizes the sum of sqﬁared of errors when

the original data points are projected onto this new axis.

Since Minimize Sum of Squared Project Error = Maximize Sum of Squared Projection length of original data points
Thus, 1t 1s equivalent to find a new axis which maximizes the sum of squared of projection-length when the original
data points are projected onto this new axis.

Let v be the unit column vector which defines the direction of a new axis.

Let a, be the original data-point represented by the 7-th row of the original input matrix 4

The length of the projection of the column-vector representing a, onto the new axis is given by alfr Y

= 2 2
Sum of Squared Projection length onto the new axis for all data points = Z‘alf -v’ = ‘Av’ =v' A" 4v

i=1

m 2 ’
Thus, the unit-vector defining the direction of the new axis, v, = argmax E aI.T -v‘ = arg m|ax‘Av‘ = argmaxv’ A" Av
=1 < v|=1
i=1

M=t

In other words, we want to find v, which maximizes v AT Av subject to the constraint of v'v =1

Take the Lagrangian approach, we differentiate

[V A" A4v— A(v'v—1)] w.r.t. A and v respectively and set the results to zero to get:

VIT v,=1 and

247 Av, =2y, =0= A" Av, = Av, = v, is one of the eigenvectors of the (square) matrix A

Since the objective is to maximize v’ A" 4v =v' Av = A,

= A and v, should be the largest eigenvalue and the corresponding eigenvector of A" 4 respectively.

Since each row of 4 corresponds to a data-point, 4” 4 is actually the covariance matrix of the data-set as long as

the data has already been "centered", 1.e. each attribute x, < ( 2% ?,) DIMRED 62



Direction in Data

v

Projection

Direction in Data

-1 05 0 0s

(=T

(e

v

-1 050 05

Projection

0 00 ¢O EIEINFTEENNETINEEETEEN YD (O me O -

2 0 2
X
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How to deterrnine the directions of
pnd k-th ne eW axes ?

After projecting the ongml/ll ata-points fnto the 1stnew axis

we want to find another (the 2nd) new axis to account for the "re51dua1 components of each data point.
For the i - th data point represented by its corresponding column-vector a,

its residue after projecting to the 1st new axis is given by: aiT - (aiT V)V,

Objective: To find v, which defines the direction of the 2nd new axis which can

Minimize the total projection errors for the "residual components" of each data point
(i.e. after subtracting their projection to the direction of v, )

= Maximizing Sum of Squared Projection length of the "residual components" of the original data points
In other words, we want to find:

m 2
v, = argm?XZ[vT (af —(a; -vl)vl)] with vjv, =1.
i=1

or equivalently, we want to find:

v, =arg max v’ 4" Av
vivi|y=1

Here, v, 1s the unit column vector which defines the direction of the 2nd new axis.

Similar to the derivation of v, , it can be shown that

v, should be the 2nd eigenvector, i.e. the one corresponds to the 2nd largest eigenvalue of A" 4 respectively.
In general, v, ,which defines the direction of the & - 72 new axis,

is given by the kth-eigenvector of 4” 4, i.e. the one corresponds to the & - #/ largest eigenvalue of A” 4.
See Chapter 1 of Principal Component Analysis by 1. T Jolliffe [PCA] and the references therein for theglgtagpreef.



In conclusion, we have found that:

o The direction of the 1st PC, z1 is given by the
eigenvector v4 which corresponds to the
largest eigenvalue of the covariance matrix
ATA.

o The second vector that is orthogonal
(uncorrelated) to the first is the one that has
the second highest variance which comes to
be the eigenvector corresponding to the
second largest eigenvalue of A’A.

o And soon ...
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Relation to between
SVD and PCA (Eigen-decomposition)

o SVD gives us:
Show how to

e A=UXVI perform PCA
o For any matrix A (or eigenvalue

. _ oy . decomposition)
o Eigen-decomposition: using SVD
e S=XAX! in practice !
* For any symmetric matrix S
o U, V, X are orthonormal (UTU=I, etc), ﬁ
o A, X2 are diagonal
o What is: ‘f(ﬂ\ Xt

e AAT=UX VT(UX VT)T=UX VT(VZTUT) = UX2T uT
e ATA=VITUT(UXVT) = \FZT Al
ATA= S=X A X Also: ;=g

Summary: Columns of U are orthonormal eigenvectors of AAT
Columns of V are orthonormal eigenvectors of ATA
S is a diagonal matrix containing the square roots of eigenvalues from U or V in descending order.



When is SVD = PCA?

o Centered data
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When is SVD different from PCA?

PCA

SVD

i/'
° y
xl}
X




Additional notes for PCA

o PCA is sensitive to scale

o PCA should be applied on data that have approximately
the same scale in each variable

o Also remember to ‘center’ each of the attributes, i.e.
substracted by the sample mean, to get the covariance
matrix before doing eigenvalue decomposition (or SVD).
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x2

-2

6 -4

x2

-2

6 -4

eo®

Lo
e °q °*

° LJ
®
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How many PCAs to keep

Eigenvalue

Component Number
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Example: PCA on Faces: “Eigenfaces”

1st principal vector (aka eigenface)

» Other

principal
vectors
(eigenfaces)

For all except average,

‘gray” =0,

“white” > 0,

“black” <0
http://En.wikipedia.org/wiki/Eigenface DIMRED 85




Computational Trick for
PCA with Eidgenfaces

Each 100x100-pixel sample face is a 10,000 dimension data point,
represented as a 1x10,000 row vector.

Stack 300 sample faces together to form a 300x10,000 input data matrix A
= Size of covariance matrix A’A =10Kx10K ; too big for eigen-decomposition
Instead, do eigen-decomposition on the 300x300 AA" to get:
A andu, st. AA'u = Au,
Pre-multiply both sides by A" :
A"AA ", = A" Au, = A A'u,
= ATA(ATu) =2, (ATu,)
= v, = A'u, is the eigenvector of the 10,000x10,000 A" A
= We have solved eigen-decomposition for the big A" A
by solving that for the 300x300 AA" !

*#y. 18 a 10000 x 1 vector, having the same dimension of an input data point (a face)

=> v, 1s (and can be displayed as) the i - th eigenface ! DIMRED 86



CUR Decomposition



SVD: Strength and Weakness

+ Optimal low-rank approximation
In terms of Frobenius norm

- Interpretability problem:

e A singular vector specifies a linear
combination of all input columns or rows

- Lack of sparsity:

e Singular vectors are dense!
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Frobenius norm:

CUR Decomposition Xlg= Z; X’
o Goal: Express A as a product of matrices C,U,R
Make IA-C-U-Rl; small

o “Constraints” on C and R:

Yo

|

(KNI
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CUR Decomposition

Frobenius norm:

IXIe= 5 X2

o Goal: Express A as a product of matrices C,U,R

o “Constraints” on C and R:

(

|

&

Make IA-C-U-Rl; small

1

|

/

=

Pseudo-inverse of
the intersection of C and R

U R

DIMRED 90



CUR: Provably good approx. to SVD

o Let:
A, be the “best” rank k approximation
to A (thatis, A, is SVD of A)

Theorem [Drineas et al.]

CUR in O(m-n) time achieves
e |A-CURI; < IA-A,l; + €lAllg
with probability at least 1-0, by picking
e O(k log(1/8)/€?) columns, and
e O(k?10og3(1/8)/<°) rows
In practice:
Pick 4k cols/rows
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CUR: How it Works

o Sampling columns (similarly for rows):

Input: matrix A € R"”", sample size ¢
Output: C,; € R"*¢
L. d6fE = 1. 2% [column distribution]

2. P(z) = Z;:A(i:l’-)g/ Zz] A(i,j)
3.fore =1:c¢  [sample columns]
4. Pickjel:n based on dlstrlbutlon Pla)

5. Compute Cy(:,7) = 1)/+/eP(j)

Note this is a randomized algorithm, same
column can be sampled more than once

Total power =c * E[ Cy(:, i) 2] =c * E[A%(:j) /[ cP(j) 1] = C*g{AZ( J) P(j)/ cP(j) } ZAZ( j)

i.e., same as the total power of the original matrix A !! DIMRED 92



Computing U

o Let W be the “intersection” of sampled
columns C and rows R

o LetSVDofW=XZYT
o Then: U=W*=YZ*XT

e Z*: reciprocals of non-zero

singular values: Z*; =1/ Z; Why pseudoinverse works?
e W+ is the “pseudoinverse” W=Xzv
then W-1=(YT)-1Z-1 X1
=YZ1XT
W R Due to orthonomality
N X-1=XT and Y-1=YT
A = ‘ Since Z is diagonal Z-' = 1/Z;
C \ Thus, if W is nonsingular,
U=W-+ pseudoinverse is the true inverse
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CUR: Pros & Cons

+ Easy interpretation

- Since the basis vectors are actual
columns and rows

+ Sparse basis

- Since the basis vectors are actual s?fﬂi‘ifﬁi‘éiﬁ?
columns and rows 5

- Duplicate columns and rows
- Columns of large norms will be sampled many times

DIMRED 94



Solution

o If we want to get rid of the duplicates:

e Throw them away

e Scale (multiply) the columns/rows by the
square root of the number of duplicates

LN )

Construct a
small U

DIMRED 95



SVD vs. CUR

sparse and small

SVD: A=U gVT
SV ]

Huge but sparse  Big and dense

dense but small

CUR: A=CUR
yd V]

Huge but sparse  Bjg but sparse
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Simple Experiment
o DBLP bibliographic data

e Author-to-conference big sparse matrix

e A;: Number of papers published by author / at
conference j

e 428K authors (rows), 3659 conferences (columns)
* Very sparse

o Want to reduce dimensionality

e How much time does it take?
e \What is the reconstruction error?
e How much space do we need?
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Results: DBLP- big sparse matrix
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o Accuracy:
e 1 —relative sum squared errors

o Space ratio:
e #output matrix entries / #input matrix entries
o CPU time

Sun, Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Grapg:'\sﬂ, RSEDDM9,807



What about linearity assumption?

o SVD is limited to linear projections:

e Lower-dimensional linear projection 3
that preserves Euclidean distances a3

o Non-linear methods: Isomap
e Data lies on a nonlinear low-dim curve aka manifold

+ Use the distance as measured along the manifold
e How?

- Build adjacency graph

* Geodesic distance is
graph distance

- SVD/PCA the graph
pairwise distance matrix
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Further Readln% for CUR
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Intuition of CUR

from Frieze A, Kannan R, Vempala S (2004) Fast Monte-Carlo algorithms for
finding low-rank approximations. J ACM 51(6):1025—-1041.

The central idea of our approach is described as follows: We pick p rows of
A independently at random, each according to a probability distribution satisfying
Assumption A1 (see Section 1.1). Suppose these rows form a p x m matrix S’. The
rows will be scaled to form a matrix S (Step 1 of the Algorithm in Section 4). It
will be relatively easy (Lemma 2) to show that S”S approximately equals AT A.
The intuition for this is that the (i, j)th entry of AT A is the dot product of the ith
and jth columns of A and indeed, since S has a random sample of rows of A, the
entry (S7S); ; estimates this; the scaling is done to make this estimate unbiased.
Now from standard Linear Algebra, we can get the SVD of A from the spectral
decomposition (SD) of ATA.! and therefore approximately from the SD of STS.
Repeating this, the SD of S”S can be read off from the SVD of S which in turn can
be obtained from the SD of SS”. Since SS is just a p x p matrix, the problem
is reduced to computing the SVD of a constant sized matrix! This still leaves the
computation of SS”. For this, we apply the sampling trick a second time—we pick a
sample of p columns of §, to form a p x p matrix W (Step 2 of the algorithm), then
WWT approximates SS”. Now the SD of WW is all that is needed for which the
SVD of W suffices. This then is the central computational task of the algorithm. We
present the algorithm in Section 4. Besides Lemma 2, the key step in the analysis is
showing that we can go from approximate left singular vectors of S to approximate
right singular vectors with only a small loss.

A key insight of the article, and the basis of the algorithm, is the existence of a
good low-rank approximation to A in the subspace spanned by a small sample of
its rows. We state this below formally. The constant ¢ is defined in Assumption Al. ., ,,,



State of the Art work on Optimal CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf
Definition (The CUR Problem)

Given
mAcR™"
B kK < rank(A)
mc>0

construct
m CeR™C
mReR™"
mUec R

such that:
IA—CUR|z < (1+¢)-|A— A

with ¢, r, and rank(U) being as small as possible.



Prior Art on CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf

Sub-optimal and randomized algorithms.

c r rank(U) |A — CUR||s < Time
T | K/ K/ k |A = Al +<=[ATZ | nnz(A)
2 | K/ k[ k |A—AclZ+=[A[Z [ nnz(A)
3 | (klogk)/=2 | (klogk)/=* | (kKlogk)/e2 | (1 + o)A —AklB |
4 | (klogk)/e2 | (klogk)/e2 | (Klogk)/e2 | (2+e)|A —AklZ | m®
5| k/e k/e® k/e (14 ¢)||A — Akll& n°k /e
References:

Drineas and Kannan. Symposium on Foundations of Computer Science, 20083.
Drineas, Kannan, and Mahoney. SIAM Journal on Computing, 20086.

Drineas, Mahoney, and Muthukrishnan. SIAM Journal on Matrix Analysis, 2008.
Drineas and Mahoney. Proceedings of the National Academy of Sciences, 2009.

Wang and Zhang. Journal of Machine Learning Research, 2013.
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Prior Open Problems on Optimal CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf

Optimal CUR: Can we find relative-error CUR algorithms
selecting the optimal number of columns and rows,
together with a matrix U with optimal rank?

Input-sparsity-time CUR: Can we find relative-error CUR
algorithms running in input-sparsity-time (nnz(A) time)?

Deterministic CUR: Can we find relative-error CUR
algorithms that are deterministic and run in poly time?
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Summary of recent Results on Optimal CUR
http://mmds-data.org/presentations/woodruff mmds14.pdf

Optimal CUR: First optimal CUR algorithms.

Input-sparsity-time CUR: First CUR algorithm with
running time proportional to the non-zero entries of A.

Deterministic CUR: First deterministic algorithm for CUR
that runs in polynomial time.
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Lower Bound Results on Optimal CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf

Fix appropriate matrix A € R"". Consider a factorization CUR,

|A — CURJIE < (1 +¢)lIA — Axllf:

Then, for any k > 1 and for any = < 1/3:

= Q(k/e),

and
= Q(k/e),
and
rank(U) > k/2.

Extended lower bound in [Deshpande and Vempala, 2006], [Boutsidis et al, 2011], [Sinop and Guruswami, 2011]



Input-sparsity-time CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf

There exists a randomized algorithm to construct a CUR with

= O(k/¢)

and
= O(k/¢)

and
rank (U) = k

such that, with constant probability of success,
IA — CURJE < (1 +¢)[|A — Agllz.

Running time: O (nnz (A)logn+ (m+ n) - poly (logn,k,1/¢)).
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Deterministic CUR

http://mmds-data.org/presentations/woodruff mmds14.pdf

There exists a deterministic algorithm to construct a CUR with

= O(k/¢)
and
r = O(k/¢)
and
rank (U) = k
such that

|A — CURI[E < (1 +<)l|A — AklE.
Running time: O(mn3k /<).
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